Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Our study examines how volcanic ash layers affect Earth's environment and climate, focusing on carbon, cadmium, and sulfur changes in deep-sea sediment from the Toba super eruption 74,000 years ago. This eruption, the largest of the Quaternary period, released 2,800 cubic kilometers of material and sulfur dioxide, which formed sulfate aerosols, potentially causing a volcanic winter. In sediment core RC14-37, we found a 15 cm thick Toba ash layer at 100-115 cm depth, with the highest ash concentration at 102-104 cm, significantly diluting the sulfur signal from 102-106 cm and masking the sulfur peak. Elevated sulfur levels just below the top of the ash layer suggest rapid deposition after most ash settled, with levels decreasing towards the base, indicating additional atmospheric sulfur. We used X-ray fluorescence (XRF) to measure sulfur and cadmium content. High cadmium levels in the ash layers suggest increased marine productivity. The SiO2 content in the ash ranged from 66% to 78%. Given that Toba ash contains 12 ppm sulfur, our corrected sulfur content (1700-3100 ppm) suggests most sulfur came from atmospheric sulfate aerosols. These results indicate increased biological productivity and sulfur in the ash layers, providing insights into the eruption's ecological impacts.more » « less
-
Background and Aims Rice accounts for around 20% of the calories consumed by humans. Essential nutrients like zinc (Zn) are crucial for rice growth and for populations relying on rice as a staple food. No well-established study method exists. As a result, we a lack a clear picture of the chemical forms of zinc in rice grain. Furthermore, we do not understand the effects of widespread and variable zinc deficiency in soils on the Zn speciation, and to a lesser extent, its concentration, in grain. Methods The composition and Zn speciation of Cambodian rice grain is analyzed using synchrotron-based microprobe X-ray fluorescence (µ-XRF) and extended X-ray absorption fine-structure spectroscopy (EXAFS). We developed a method to quantify Zn species in different complexes based on the coordination numbers of Zn to oxygen and sulfur at characteristic bond lengths. Results Zn levels in brown rice grain ranged between 15-30 mg kg-1 and were not correlated to Zn availability in soils. 72%-90% of Zn in rice grains is present as Zn-phytate, generally not bioavailable, while smaller quantities of Zn are bound as labile nicotianamine complexes, Zn minerals like ZnCO3¬ or thiols. Conclusion Zn speciation in rice grain is affected by Zn deficiency more than previously recognized. A majority of Zn was bound in phytate complexes in rice grain. Zinc phytate complexes were found in higher concentrations and also in higher proportions, in Zn-deficient soils, consistent with increased phytate production under Zn deficiency. Phytates are generally not bioavailable to humans, so low soil Zn fertility may not only impact grain yields, but also decrease the fraction of grain Zn bioavailable to human consumers. The potential impact of abundant Zn-phytate in environments deficient in Zn on human bioavailability and Zn deficiency requires additional research.more » « less
-
We have measured the absolute doubly differential angular sputtering yield for 20 keV Kr+ impacting a polycrystalline Cu slab at an incidence angle of θi = 45° relative to the surface normal. Sputtered Cu atoms were captured using collectors mounted on a half dome above the sample, and the sputtering distribution was measured as a function of the sputtering polar, θs, and azimuthal, ϕs, angles. Absolute results of the sputtering yield were determined from the mass gain of each collector, the ion dose, and the solid angle subtended, after irradiation to a total fluence of ∼1 × 1018 ions/cm2. Our approach overcomes shortcomings of commonly used methods that only provide relative yields as a function of θs in the incidence plane (defined by the ion velocity and the surface normal). Our experimental results display an azimuthal variation that increases with increasing θs and is clearly discrepant with simulations using binary collision theory. We attribute the observed azimuthal anisotropy to ion-induced formation of micro- and nano-scale surface features that suppress the sputtering yield through shadowing and redeposition effects, neither of which are accounted for in the simulations. Our experimental results demonstrate the importance of doubly differential angular sputtering studies to probe ion sputtering processes at a fundamental level and to explore the effect of ion-beam-generated surface roughness.more » « less
-
Synchrotron instruments are useful for marine studies because they make nondestructive measurements of chemical composition and speciation on small sample volumes and at low concentrations. Synchrotron beamtime is available without cost using a peer-reviewed proposal system. New users do not have to be synchrotron radiation experts to design a good experiment, but some guidance is needed to design and propose appropriate experiments. Here we present some of that guidance to encourage and increase access to synchrotron facilities for marine science. We provide advice and examples from experts on how to access these instruments, choose the optimal sample preparation, and avoid common pitfalls. We then present some examples of successful marine studies that use these techniques.more » « less
An official website of the United States government

Full Text Available